Economics 2301

Lecture 2

Limits
Limits and Continuity

- It is often necessary to evaluate a function as its argument approaches some value.
- The **limit** of a function as its argument approaches some number \(a \) is simply the number the function’s value approaches as the argument approaches \(a \), either from smaller values of \(a \), giving the **left-hand limit**, or from larger values of \(a \), giving the **right-hand limit**.
The left-hand limit of a function $f(x)$ as its argument approaches some number a, written as

$$\lim_{x \to a^-} f(x)$$

exists and is equal to L^L if, for any arbitrarily small number ϵ, there exists a small number δ such that

$$|f(x) - L^L| < \epsilon$$

whenever $a - \delta < x < a$.

Left-hand Limit
The right-hand limit of a function $f(x)$ as its argument approaches some number a, written as

$$\lim_{x \to a^+} f(x)$$

exists and is equal to L^R if, for any arbitrarily small number ε, there exists a small number δ such that

$$| f(x) - L^R | < \varepsilon$$

whenever $a < x < a + \delta$.
When the left-hand limit equals the right-hand limit, we can simplify the notation by suppressing the superscripts and defining

\[
\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = \lim_{x \to a} f(x)
\]
Infinite Limits

The limit of a function as its argument approaches a equals positive infinity if the value of the function increases without bound, and equals negative infinity if the value decreases without bound.

$$
\lim_{x \to a} f(x) = +\infty \text{ if, for every } N > 0, \text{ there exits a } \delta > 0 \\
\text{so that } f(x) > N \text{ whenever } a - \delta < x < a + \delta.
$$

Also, we have $\lim_{x \to a} f(x) = -\infty$ if, for every $N < 0$, there is a $\delta > 0$ so that $f(x) < N$ whenever $a - \delta < x < a + \delta$.
Left-hand limit ≠ Right-hand limit
Rules for Evaluating Limits

Rule 1

\[
\lim_{x \to 0^-} m(k + x) = \lim_{x \to 0^+} m(k + x) = mk
\]

Rule 2

\[
\lim_{x \to \infty} \frac{k}{m \cdot x + h} = 0
\]
Example 1 of Limit

\[
\lim_{x \to 0^+} \left(\frac{x^2 - 9}{x + 3} \right) = \lim_{x \to 0^+} (x - 3) = -3
\]
Example 2 of Limit

$$\lim_{{x \to \infty}} \left(\frac{10}{5x} + 20 \right) = 20$$
Our previous function

\[\lim_{x \to 0^+} \left(\frac{2}{x^3} \right) = \infty \]

\[\lim_{x \to 0^-} \left(\frac{2}{x^3} \right) = -\infty \]
A continuous univariate function has no "breaks" or "jumps."

A function \(f(x) \) is continuous at \(x = a \), where is in the domain of \(f \), if the left- and right-hand limits at \(x = a \) exist and are equal.

\[
\lim_{x \to a} f(x) = \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x)
\]

and the limit as \(x \to a \) equals the value of the function at that point,

\[
\lim_{x \to a} f(x) = f(a)
\]
Figure 2.5 Functions That Are Not Continuous

(a) $f(x)$

(b) Total cost

(c) $f(x)$
Our function that was not continuous

\[y = \frac{2}{x^3} \]
Our noncontinuous function

We know from a previous slide that

\[
\lim_{x \to 0^+} \left(\frac{2}{x^3} \right) = \infty \quad \text{and} \quad \lim_{x \to 0^-} \left(\frac{2}{x^3} \right) = -\infty
\]

\[
f(x) = \frac{2}{x^3} \quad \text{at} \quad x = 0 \quad \text{is} \quad \frac{2}{0} \quad \text{which is not defined.}
\]
A vertical asymptote of a function occurs at a point when either a left-hand limit or a right-hand limit approaches positive infinity or negative infinity at that point. A function is discontinuous at a point where there is a vertical asymptote.