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Example excise tax revenue
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Example excise tax revenue
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Demand Elasticity Unitary :2 Case
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Excise Tax Example 
Continued

Tax Rate

R=30t R=100t/(2+t)

R ∆R/∆t R ∆R/∆t

1 30 33.331 30 33.33

30 17.67

2 60 50

30 10

3 90 60



General Form of Difference 
Quotient
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Difference quotient for linear 
and quadratic functions
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Change at the margin and the 
derivative

In general, the difference quotient of a function 
y=f(x) depends upon the parameters of the original 
function, as well as the argument of the function, x, 
and the change in the argument of the function, and the change in the argument of the function, 
∆x.   We can, in a sense, standardize the 
difference quotient by specifying a common ∆x to 
be used in the calculation of all difference 
quotients.  In calculus, we consider the limit of the 
difference quotient as ∆x approaches zero.  We 
call the difference quotient as ∆x approaches zero 
the derivative.



Derivative
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Derivative Linear function
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Derivate of Quadratic function
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Derivative of our tax function 
for constant elasticity demand
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Derivative and Economics

� Since the derivative is defined for very small 
changes in x, it is some times referred to as 
the instantaneous rate of change of the 
function.
The mathematical concept of the derivative � The mathematical concept of the derivative 
has a direct correspondence to the 
economic concept of looking at relationships 
“at the margin.”

� Economic concepts such as marginal 
revenue, marginal productivity and marginal 
propensity to consume.



Geometry of Derivatives

� The difference quotient ∆R/∆t was also 
referred to as the slop of the secant 
line.line.

� The derivative of a function at a given 
value represents the slope of a line 
tangent to that function at that value.



Figure 6.2 Secant Lines and 
a Tangent Line



Derivative as a function

� In many cases, the derivate dy/dx is 
itself a function of x.  i.e. dy/dx=f’(x).



Our constant elasticity tax 
revenue function
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Plot of Tax Revenue and 
Marginal Tax Revenue
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Geometry of Derivatives
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Figure 6.4 A Function and Its 
Derivative


