Economics 2301

Lecture 17

Differential
Average and marginal functions

- The average function rises as long as the marginal function lies above it.
- The average function declines as long as the marginal function lies below it.
Average and marginal functions

If \(f'(x_0) > \frac{f(x_0)}{x_0} \Rightarrow \) for a small change in \(x \) in the neighborhood of \(x_0 \), \(\frac{f(x_0 + \Delta x)}{x_0 + \Delta x} > \frac{f(x_0)}{x_0} \).

Proof:

\(f'(x_0) > \frac{f(x_0)}{x_0} \Rightarrow \) for small \(\Delta x \)

\[\frac{f(x_0 + \Delta x)}{\Delta x} > \frac{f(x_0)}{x_0} + \frac{f(x_0)}{\Delta x} \quad \text{or} \]

\[\frac{f(x_0 + \Delta x)}{\Delta x} > \frac{(x_0 + \Delta x)f(x_0)}{x_0 \cdot \Delta x} \quad \text{or} \]

\[\frac{\Delta x}{x_0 + \Delta x} \quad \text{gives} \quad \frac{f(x_0 + \Delta x)}{x_0 + \Delta x} > \frac{f(x_0)}{x_0}. \]
Basic Question

- How does a dependent variable change when the independent variable changes given that we have started at some initial value of the independent variable?

- We will discover that an easy solution to this question comes from the use of the differential.
Solution using Difference quotient

We know the change in Y given a small change in X is
\[\Delta y = f(x_1) - f(x_0) = f(x_0 + \Delta x) - f(x_0) \]
Multiplying righthand side by \(\Delta x/\Delta x \) gives
\[\Delta y = \left(\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \right) \Delta x \]
i.e. the difference quotient times the change in X.
This maybe difficult to calculate.
Define dx as an arbitrary change in x from its initial value x_0 and dy as the resulting change in y along the tangent line from the initial value of the function $y_0 = f(x_0)$. The differential of $y = f(x)$, dy, evaluated at x is

$$dy = f'(x_0) \cdot dx.$$
Figure 6.9 Differential Approximation and Actual Change of a Function
Economic Example

Recall our tax revenue function, for a unitary elasticity demand function and supply of good perfectly elastic at P.

$$R = \frac{tC}{p+t}$$

If we let $p = 2$ and $C = 100$, our function becomes

$$R = \frac{100t}{2+t}$$

Our derivative was

$$\frac{dR}{dt} = \frac{200}{(2+t)^2}$$

Suppose t goes from 2 to 3.

$$\Delta R = f(3) - f(2) = \frac{100 \cdot 3}{2 + 3} - \frac{100 \cdot 2}{2 + 2} = 60 - 50 = 10$$

Using our differential

$$dR = f'(2)dx = \frac{200}{(2+2)^2} \cdot 1 = 12.5$$
The extent to which the differential serves as a good approximation to the actual change of the value of a function for discrete changes in its argument depends upon the size of the change of the argument.

Table on next slide illustrates for our tax revenue function.
Actual and Approximate Changes in Revenue

<table>
<thead>
<tr>
<th>t</th>
<th>R</th>
<th>ΔR</th>
<th>dR (estimated)</th>
<th>Difference %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>2.1</td>
<td>51.21951</td>
<td>1.219512</td>
<td>1.25</td>
<td>2.5%</td>
</tr>
<tr>
<td>2.5</td>
<td>55.55556</td>
<td>5.555556</td>
<td>6.25</td>
<td>12.5%</td>
</tr>
<tr>
<td>2.75</td>
<td>57.89474</td>
<td>7.894737</td>
<td>9.375</td>
<td>18.8%</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>10</td>
<td>12.5</td>
<td>25.0%</td>
</tr>
</tbody>
</table>
Quality of Differential approximation

The extent to which the differential serves as a good approximation to the actual change of the value of a function also depends upon the function itself. The differential approximation holds more closely for functions that are closer to being linear.

Consider \(y = 100 + 200x - \beta x^2 \)

\(dy = (200 - 2\beta x_0) dx \) and the actual change in \(y \) for change \(dx \) is

\(\Delta y = (200 - 2\beta x_0 - \beta dx) dx \)
Quality of Differential

Actual and Approximate Changes with Varying Nonlinearity ($x_0=10$ $dx=1$)

<table>
<thead>
<tr>
<th>β</th>
<th>Δy (actual)</th>
<th>dy (estimated)</th>
<th>Difference (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>200</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>158</td>
<td>160</td>
<td>1.3</td>
</tr>
<tr>
<td>4</td>
<td>116</td>
<td>120</td>
<td>3.5</td>
</tr>
<tr>
<td>6</td>
<td>74</td>
<td>80</td>
<td>8.1</td>
</tr>
<tr>
<td>8</td>
<td>32</td>
<td>40</td>
<td>25</td>
</tr>
</tbody>
</table>
Figure 6.11 Differential Approximation for Beta with Different Functions

(a) $\beta = 0$
- $dy = 200dx$
- $y = 100 + 200x$
- $(10, 2100)$
- $(11, 2300)$

(b) $\beta = 2$
- $dy = 160dx$
- $y = 100 + 200x - 2x^2$
- $(10, 1900)$
- $(11, 2060)$
- $(11, 2058)$

(c) $\beta = 8$
- $dy = 40dx$
- $y = 100 + 200x - 8x^2$
- $(10, 1300)$
- $(11, 1340)$
- $(11, 1332)$