Economics 2301

Lecture 30

Univariate Optimization
Identifying and Characterizing Extreme Values

- Extreme value of a univariate function can occur either within the interval over which the function is defined or at its endpoints.
- Strictly monotonic functions do not have extreme values within the interior of their domain, only at the endpoints.
- Nonmonotonic functions may have one or more extreme values within the interior of the domain.
Figure 9.1 Tax Rate and Tax Revenue

\[R = 50 \]

\[t^* = \frac{1}{2} \]
We say that x^* is a stationary point of a differentiable function $f(x)$ if $f'(x^*) = 0$.
First Order Condition

If the function \(y = f(x) \) is everywhere differentiable on an interval and reaches a maximum or a minimum at the point \(x^* \) within that interval, then \(x^* \) is a stationary point; that is \(f'(x^*) = 0 \).
Example 1

Let \(y = -6x^2 + 24x - 30 \)

This function has a local maximum at \(x^* = 2 \).

Note: \(\frac{dy}{dx} = -12x + 24 = 0 \) at \(x^* = 2 \).
Graph of Example 1

\[y = 6x^2 + 24x - 30 \]
Example 2

Let \(y = 3x^2 - 30x + 4 \).

This function reaches a minimum at \(x^* = 5 \).

\[
\frac{dy}{dx} = 6x - 30 = 0 \text{ at } x^* = 5.
\]
Graph of Example 2

$Y = 30X^2 - 30X + 4$
Function with 2 extreme values

Let \(y = 0.2X^3 - 5X^2 + 15X - 4 \)
This function has two extreme values at \(X^* = 1.67 \) and 15,

\[
\frac{dy}{dx} = .6X^2 - 10X + 15 = 0
\]

\[
X^* = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{10 \pm \sqrt{100 - 4 \cdot 0.6 \cdot 15}}{2 \cdot 0.6}
\]

\[
= \frac{10 \pm \sqrt{100 - 36}}{1.2} = \frac{10 \pm \sqrt{64}}{1.2} = \frac{10 \pm 8}{1.2} = 1.67;15
\]
Graph of Example 3

\[y = 0.2X^3 - 5X^2 + 15X - 4 \]
Critical Point and First-Order Conditions

- We say that x^* is a **critical point** of a function $f(x)$ if $f'(x^*)=0$.

- **First Order Condition**: If the function $f(x)$ achieves a maximum or a minimum at the point x^* within an interval on which it is defined, then x^* is a critical point of that function.
Characterizing Stationary Points

- **Global Maximum**: If a function $f(x)$ that is everywhere differentiable has the stationary point x^*, this stationary point represents a global maximum if $f'(x) \geq 0$ for all $x \leq x^*$, and $f'(x) \leq 0$ for all $x \geq x^*$.

- **Global Minimum**: If a function $f(x)$ that is everywhere differentiable has the stationary point x^*, this stationary point represents a global minimum if $f'(x) \leq 0$ for all $x \leq x^*$, and $f'(x) \geq 0$ for all $x \geq x^*$.
Graph of first derivative of Example 1

\[\frac{dy}{dx} = -12x + 24 \]
Graph of first derivative of Example 2

\[\frac{dy}{dx} = 6x - 30 \]
Local Maximum

- If a function $f(x)$ that is everywhere differentiable has an interior local maximum at the stationary point x^*, then, throughout some interval to the left of the stationary point, (m, x^*), $f'(x) \geq 0$ and, throughout some interval to the right of the stationary point, (x^*, n), $f'(x) \leq 0$.
Local Minimum

- If a function \(f(x) \) that is everywhere differentiable has an interior local minimum at the stationary point \(x^* \), then, throughout some interval to the left of the stationary point, \((m, x^*)\), \(f'(x) \leq 0 \) and, throughout some interval to the right of the stationary point, \((x^*, n)\), \(f'(x) \geq 0 \).
Graph of first derivative of example 3

dy/dx = 0.6x^2 - 10x + 15