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Interpreting Lagrange 
Multiplier

� With our Lagrangian function, we have 
a new variable, λ, the Lagrange 
multiplier.multiplier.

� The Lagrange multiplier, λ, represents 
the effect of a small change in the 
constraint on the optimal value of the 
objective function.



Proof of Interpretation
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Proof Continued.
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Utility Max Example
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Interpreting the Lagrange 
Multiplier

In other contexts, the Lagrange multiplier may be 
interpreted differently.  For example, if the 
objective function represents the profit function 
from undertaking an activity and the constraint from undertaking an activity and the constraint 
reflects a limit on using an input to that activity, 
the Lagrange multiplier reflects the marginal 
benefit from having additional input.  In this case 
the Lagrange multiplier represents the price a 
firm would be willing to pay per unit of additional 
input, which is known as the shadow price of the 
input.



Figure 11.3 Short-Run Cost 
and Long-Run Cost Functions



Envelope Theorem

( )
( )

.parameters are   theand  variableschoice are  The

0,,,,, constraint  thesubject to

,,,,, function, objective  thehave We

j

11

11

=

i

mn

mn

x

xxg

xxf

β
ββ

ββ
LL

LL

( ) ( )
( )

( ) 0,,,,,

,...,2,10

are conditionsorder -first The

,,,,,-                                     

,,,,,,,,,,

 is Lagrangian The

11

11

1111

=

==−

=

mn

xx

mn

mnmn

xxg

andniforgf

xxg

xxfxxL

ii

ββ
λ

ββλ
ββββ

LL

LL

LLLL



Envelope Theorem Continued
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Envelope Theorem Continued
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Envelope Theorem Conclusion

� The envelope theorem shows that the effect of a 
small change in a parameter of a constrained 
optimization problem on its maximum value can be 
determined by considering only the partial 
derivative of the objective function and the partial derivative of the objective function and the partial 
derivative of the constraint with respect to that 
parameter.

� To a first approximation, it is not necessary to 
consider how a small change in a parameter affects 
the optimal value of the variables of the problem in 
order to evaluate the change in its maximum value.



Average Cost Curves
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Average Cost Function cont.
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Figure 11.3 Short-Run Cost 
and Long-Run Cost Functions


