

#### Lecture 8

#### Logarithms

#### Base 2 and Base 10 Logarithms

| Base 2 Logarithms |                            | Base 10 Logarithms          |                                |
|-------------------|----------------------------|-----------------------------|--------------------------------|
| $Log_2(0.25)=-2$  | since 2 <sup>-2</sup> =1/4 | Log <sub>10</sub> (0.01)=-2 | since 10 <sup>-2</sup> = 1/100 |
| $Log_2(0.5)=-1$   | since 2 <sup>-1</sup> =1/2 | Log <sub>10</sub> (0.1)=-1  | since 10 <sup>-1</sup> =1/10   |
| $Log_{2}(1)=0$    | since 2º=1                 | Log <sub>10</sub> (1)=0     | since 10º=1                    |
| $Log_{2}(2)=1$    | since 2 <sup>1</sup> =2    | Log <sub>10</sub> (10)=1    | since 10 <sup>1</sup> =10      |
| $Log_{2}(4)=2$    | since 2 <sup>2</sup> =4    | Log <sub>10</sub> (100)=2   | since 10 <sup>2</sup> = 100    |
| $Log_{2}(8)=3$    | since 2 <sup>3</sup> =8    | Log <sub>10</sub> (1000)=3  | since 10 <sup>3</sup> =1000    |

## Figure 3.4 Base 2 and Base 10 Logarithms



## Rules of logarithmic transformations

Product  $\log_b(XY) = \log_b(X) + \log_b(Y)$ 

Quotient  $\log_b(X / Y) = \log_b(X) - \log_b(Y)$ 

Exponent  $\log_b(X^{\lambda}) = \lambda \log_b(X)$ 

#### Relationship between logarithms with different bases

Let b and c be bases for two sets of logarithms.  $\log_b(x) = \log_b(c^{\log_c(x)}) = \log_c(x)\log_b(c)$ or

$$\log_{b}(c) = \frac{\log_{b}(x)}{\log_{c}(x)}$$
  
if  $b < c \Rightarrow \log_{b}(c) > 1$   
$$\Rightarrow \frac{\log_{b}(x)}{\log_{c}(x)} > 1$$
  
$$\Rightarrow |\log_{b}(x)| > |\log_{c}(x)|$$

### Key Transformation

Given the results from the previous slide  $\log_{10}(x) = \log_{10}(e)\log_e(x) = 0.4343 * \log_e(x)$   $\log_e(x) = \log_e(10)\log_{10}(x) = 2.3026 * \log_{10}(x)$ 

#### Natural Logarithms

- A natural logarithm has as it base the exponential, e.
- We write natural logarithms of x as log<sub>e</sub>(x) or ln(x).
- Natural logarithms have many applications in economics

# Properties of natural logarithms

 $*\ln(e^z) = z$  $* e^{\ln X} = X$  $*\ln(XY) = \ln(X) + Ln(Y)$  $*\ln\left(\frac{X}{Y}\right) = \ln(X) - \ln(Y)$  $\ln(X^{Z}) = Z \ln X$ 

### Rule of 70

How long does it take for your money to double at interest rate r with continuous compound. A good approximation is

$$n = \frac{70}{r}$$
 where r equal interest rate in percentage.

For simple compounding the rules is 72  $n = \frac{72}{r}$ 

#### **Graphing Grow Data**

- income 

income

#### Graphing Log of income



In(income)

### The log Transformation

Suppose  $X(t+n) = X(t)e^{rn}$ then  $\ln(X(t+n)) = \ln(X(t)) + rn$ This is a linear line with slope r, intercept  $\ln(X(t))$  and independent variable n.