Definitions or Equations (10 pts)

Transpose of the product of two conformable matrices

\[(AB)' = B'A'\]

The inverse of the product of two nonsingular matrices A and B.

\[(AB)^{-1} = B^{-1}A^{-1}\]

The inner product of the two nx1 vectors x and y.

The inner product of the two vectors x and y is

\[x'y = y'x = \sum_{i=1}^{n} x_i y_i\]

General formula for the inverse of the nonsingular square matrix A.

\[A^{-1} = \frac{1}{|A|} C' \quad C = \text{cofactor matrix for } A.\]

Cramer's Rule

For the equation system \(Ax = c\), (A is nonsingular), the solution for the \(i\)th element of x is

\[x_i = \frac{|A_i|}{|A|}\]

where \(A_i\) is a matrix with the \(i\)th column of A replaced by c.
Problems (10 pts)

Use repeated substitution (and no programmable calculator) to solve for the equilibrium values of \(w \), \(x \) and \(y \) in the following system of equations.

\[
\begin{align*}
y &= 2w + 8 \\
x &= 4w - 6 \\
y &= 2x + 2
\end{align*}
\]

Using first equation, last equation
\[
\begin{align*}
2x + 2 &= 2w + 8 \\
2x &= 2w + 6 \\
x &= w + 3
\end{align*}
\]

using equation 2, we get
\[
\begin{align*}
w + 3 &= 4w - 6 \\
9 &= 3w \\
w &= 3 \\
x &= w + 3 = 3 + 3 = 6 \\
y &= 2x + 2 = 2(6) + 2 = 12 + 2 = 14
\end{align*}
\]

You are given the matrix \(A \) below:

\[
A = \begin{bmatrix} 2 & 3 & 1 \\ 0 & 4 & 0 \\ 3 & 2 & 1 \end{bmatrix}
\]

a) Calculate the determinant of \(A \) (no programmable calculators).

\[
C = \begin{bmatrix} 4 & 0 & -12 \\ -1 & -1 & 5 \\ -4 & 0 & 8 \end{bmatrix}
\]

Expanding on the second row of \(A \), we get the determinant

\[
|A| = \sum_{j=1}^{3} a_{3j} c_{2j} = 0(-1) + 4(-1) + 0(5) = -4
\]

b) Find the inverse matrix of \(A \) and prove it is the inverse (no programmable calculators).
$$A^{-1} = \frac{1}{|A|} \begin{pmatrix} 4 & -1 & -4 \\ 0 & -1 & 0 \\ -12 & 5 & 8 \end{pmatrix} \begin{pmatrix} -1 & 1/4 & 1 \\ 0 & 1/4 & 0 \\ 3 & -5/4 & -2 \end{pmatrix}$$

$$A^{-1} A = \begin{pmatrix} -1 & 1/4 & 1 \\ 0 & 1/4 & 0 \\ 3 & -5/4 & -2 \end{pmatrix} \begin{pmatrix} 2 & 3 & 1 \\ 0 & 4 & 0 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$